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Tunable Lyapunov exponent in inverse magnetic billiards
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The stability properties of the classical trajectories of charged particles are investigated in a two-dimensional
inverse magnetic domain, where the magnetic field is zero inside the domain and constant outside. As an
example, we present detailed analysis for stadium-shaped domain. In the case of infinite magnetic field, the
dynamics of the system is the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for
weaker magnetic fields, the phase space becomes mixed and the chaotic part gradually shrinks. The numerical
measurements of the Lyapunov exponent~based on the technique of Jacobi fields! and the regular-to-chaotic
phase space volume ratio show that both quantities can smoothly be tuned by varying the external magnetic
field. A possible experimental realization of the inverse magnetic billiard is also discussed.
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The investigation of standard billiard models~e.g., Buni-
movich @1# and Sinai billiards@2#! has played a pioneerin
role since the very beginning of chaos theory. Recent de
opments in nanotechnology have made it possible to exp
mentally realize such systems by electrostatically confinin
two-dimensional electron gas~2DEG! in high mobility het-
erostructures@3,4#. In these systems, the dynamics of t
electrons is dominated by ballistic motion. In the past d
cade, a new perspective of the research of semicondu
systems has emerged by the application of spatially inho
geneous magnetic fields. The inhomogeneity of the magn
field can be realized experimentally either by varying t
topography of the electron gas@5#, or using ferromagnetic
materials@6#, or depositing a superconductor on top of t
2DEG @7#. Numerous theoretical works also show the
creasing interest in the study of electron motion in inhom
geneous magnetic field@8#.

The aim of our theoretical work is to present an altern
tive two-dimensional billiardlike system which exhibits
crossover between a well-known, ergodic and mixing billia
system, and a pathological integrable system, as the ap
magnetic field is changed. The magnetic field is inhomo
neous: zero in a compact region of the plane and nonz
outside. We suppose that the system is in the ballistic reg
such as in many other works~see, e.g. Refs.@3,9#!, and our
treatment is purely classical. Two characteristic quantities
the dynamics of this type of system, which we callinverse
magnetic billiard, are calculated numerically as a function
the external magnetic fieldb: the Lyapunov exponentl(b)
~of the dominating chaotic component!, and the regular-to-
chaotic phase space volume ratio%(b). The obtained nu-
merical results show that both quantities are smooth fu
tions of the magnetic field, which means that the glo
dynamics of the system passes continuously from the i
grable (b50) to the fully chaotic case (b5`). As we shall
see below, there is also a clearly visible correlated dep
dence between the variation of the quantitiesl(b) and
%(b). These results imply thatthe degree of chaoticity can
smoothly be tunedby the external magnetic field. We no
that Kosztinet al. have made similar investigations and o
servations in Andreev billiard systems@10#.
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To demonstrate our general arguments mentioned ab
we choose a well-known chaotic system, the Bunimov
billiard shown in Fig. 1. The magnetic field~perpendicular to
the plane! is zero inside the stadium-shaped region and c
stant b outside. A part of a typical classical trajectory
depicted in Fig. 1, for an intermediate value of the magne
field b52. The trajectories in the configuration space a
straight segments inside the stadium, and circular arcs
cyclotron radiusRc51/b out of this domain.~We assume,
for simplicity, that the particle has unit mass, charge, a
speed.! At the boundary of the domain, the two pieces of t
trajectory join tangentially. As the magnetic field tends
infinity, b→`, the charged particle spends less and less t
outside the stadium, and it is also easy to see that in
limiting case its motion is described by an elastic reflect
from the wall. For this reason we call our system inver
magnetic billiard, although in the case of finite field no re
scatterings take place at the boundaries.

According to the result of Bunimovich@1#, the stadium-
shaped inverse magnetic billiard system is ergodic and m
ing in theb5` case, but as the magnetic field is decreas
the dynamics becomes partially regular and gradually m
and more phase space volume is occupied by
Kolmogorov-Arnold-Moser tori~or R2 leaves in theb50
case!, which means that the phase space is mixed. This p
nomenon can clearly be observed on the Poincare´ sections
~see Fig. 2! made for different magnetic field values. Th
individual points in the Poincare´ sections are plotted eac

FIG. 1. The trajectories of a charged particle in the inve
magnetic billiard. The cyclotron radius isRc51/b51/2, in dimen-
sionless units.
©2003 The American Physical Society02-1
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time the particle enters the zero magnetic field region
crosses the boundary of the stadium. Thex coordinate of the
points (0<x,412p) gives the position of the crossing
measured in counterclockwise direction from the pointA
along the perimeter of the stadium, while they coordinate of
the points (21<y<1) denotes the sine of the anglem rep-
resenting the direction of the trajectory, relative to the norm
of the boundary~see Fig. 1!. This Poincare´ section represent
only the relevant part of the phase space, i.e., the trajecto
intersecting the stadium region. It is well known that in th
parameter space, the Poincare´ map is area preserving@11#.

It is evident from Fig. 2 that for high magnetic fields, th
system is~almost! completely chaotic but with decreasin
magnetic field, the volume of the regular regions gradua
increases. As we have seen before, forb5` the system is
identical to the Bunimovich billiard, however, in theb→0
limit the system becomes pathological in the sense that
cyclotron radius tends to infinity, so the particle returns to
stadium domain after longer and longer time intervals.

In order to quantitatively characterize this change of
phase space portrait, we have numerically investigated
regular-to-chaotic phase space volume ratio% as a function
of the cyclotron radiusRc51/b ~i.e., the inverse magneti
field!, and the results are shown in Fig. 3. The functi
%(Rc), measured by the box-counting method with a grid
2503250 rectangular sites, is smooth, and its behavio
characteristically different for higher and lower magne
fields. For cyclotron radii less thanR1'0.01 ~i.e., for mag-
netic fields larger thanb1'100), the system is dominantl
chaotic, and the area of the regular phase space regio
practically negligible@see also Fig. 2~a!#. For cyclotron radii
larger thanR2'0.3, however, the regular part increases
the Poincare´ section@see also Fig. 2~c!#. Between these two
extremities, i.e., for cyclotron radii comparable to the ch
acteristic size of the billiard, the phase space of the syste
definitely mixed@Fig. 2~b!# with regular islands of consider
able area.

FIG. 2. The Poincare´ section of the phase space. The points
the dominating chaotic region were obtained by 50 000 iteration
a single trajectory, while for depicting the islands corresponding
the regular regions, a few different initial conditions were used. T
values of the cyclotron radii areRc50.05,Rc50.3, Rc51, respec-
tively.
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Although the volume of the chaotic bands inside the re
lar islands~ignored in our treatment! is nonzero in principle,
the numerical simulations demonstrate~see Fig. 2! that their
contribution to the chaotic phase space volume is neglig
for this system.

The positivity of the Lyapunov exponentl(Rc) is one of
the most characteristic features of magnetic or nonmagn
billiard systems~see, e.g., Ref.@12# and references therein!.
We have numerically computedl(Rc) of the dominating
chaotic component as a function of the cyclotron radiusRc
~see Fig. 3!.

The obtained functionl(Rc) is again smooth, as%(Rc).
It is also clearly visible that the numerical value of th
Lyapunov exponent strongly correlates with the regu
phase space ratio%(Rc) measured previously. For wea
magnetic fields~if b&2), the Lyapunov exponent is als
small, but as the magnetic field grows, the value ofl in-
creases, too, and for strong fields~if b*100) it saturates a
the valuel`'0.43, which agrees exactly with the Lyapuno
exponent of the ordinary Bunimovich billiard@13#.

In order to measure the Lyapunov exponent, we have
vestigated the infinitesimal variations of the trajectories w
the method of Jacobi fields, which was originally develop
for the stability analysis of the geodetic flow on curved R
mannian manifolds@14#. The method has successfully bee
applied to magnetic billiard systems on planar@15# as well as
curved surfaces@16,17#. The main idea of the method is t
study the evolution of the so-called Jacobi fields along
particular trajectory in the configuration space, which d
scribe the infinitesimal variations of the trajectory. This tec
nique is essentially the same as the method using the tan
map @11#, but our approach is more transparent. The ba
technical importance is that in our investigations, the coor
nates describing the infinitesimal variations are chosen
more natural way: they are related to the unvaried traject
itself, and not to the somewhat artificial parameters of
space of the Poincare´ section. As a result, the stability ma
trices ~i.e., the tangent maps! have a much simpler form.

In more details, letg0(t) denote the trajectory in the con
figuration spaceM, whose stability properties we intend t
investigate, and letg«(t) be a one-parameter family of var
ied trajectories around the unvaried oneg0, i.e., for all «
P(2«0 ,«0), «0.0 the curveg« is a real trajectory in the
configuration space,g«505g0, and the mapg:(2«0 ,«0)

of
o
e

FIG. 3. The regular to chaotic phase space volume ratio%(Rc)
~full squares! and the Lyaponov exponentl(Rc) ~open circles! as a
function of Rc51/b.
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3R→M, («,t)°g«(t) is everywhere continuous, an
piecewise smooth.~It is not smooth at the boundary of th
‘‘billiard.’’ ! TheJacobi fieldor infinitesimal variation vector
field Vg0

corresponding to the variationg« is the partial de-

rivative Vg0
(t)5]g«(t)/]«u«50.

It can be shown that the Jacobi fieldsVg0
(t) satisfy cer-

tain second-order differential equation, calledJacobi equa-
tion; it is due to the fact that the varied curvesg« are also
real trajectories@14,16#. In two-dimensional billiard systems
we found it convenient to fix the base vectors$ġ0(t),ġ 0

'(t)%
of the coordinate system to the investigated trajectoryg0(t),
in such a way thatġ0(t) is the~unit! vector tangential to the
trajectory at the time instantt, and ġ 0

'(t) is obtained from

ġ0(t) by a rotation through190°. In this basis, the Jacob
field is written asVg0

(t)5j(t)ġ0(t)1h(t)ġ 0
'(t), and for

characterizing a given infinitesimal variation the initial co
ditionsj(t0), h(t0), j̇(t0), andḣ(t0) have to be given.~The
real functionsj andh are the coordinates of the Jacobi fie
Vg0

.!
The number of these initial data can further be reduced

2, if we notice that~i! the longitudinal variationsj(t) as well
as ~ii ! the variations altering the speed~i.e., for which j̇
2bhÞ0, see, e.g., Ref.@16#! are irrelevant in the presen
investigation, and they decouple from the other coordina
so they can be disregarded.@In the case~i! the Jacobi field is
tangential to the unvaried trajectoryg0, thus the varied
curves are just the time shifts of the original one, while~ii !
means that we restrict the attention to a constant energy
of the phase space, as it is usual in Hamiltonian system#

In planar billiard systems, it is an elementary geome
problem to find the solutions of the Jacobi equation in ter
of the transverse coordinatesh(t) and ḣ(t) ~see, e.g., Ref.
@15#!. Generally, the solution is given by a linear transform

tion @ ḣ8
h8#5L @ ḣ

h
#, where the matrixL has the following spe-

cial forms for the straight flight in zero magnetic field (P),
for the curved flight in nonzero magnetic field (E), and for
the boundary transition (T) with magnetic field changeDb,
respectively:

P~ t !5F1 t

0 1G , E~ t,b!5F cos~bt !
1

b
sin~bt !

2bsin~bt ! cos~bt !
G ,

~1!

T~Db,m!5F 1 0

Db tanm 1G .
Here t is the time of flight~so bt is the angle of flight!, b
denotes the magnetic field, andm is the angle of incidence a
the boundary, measured in the way shown in Fig. 1. It
worth noticing that all the three types of matrices are o
parameter subgroups of SL(2,R), i.e., of the group of 232
real matrices with unit determinant. The matricesP and T
are parabolic, while the transformationsE are elliptic.
06520
y

s,

ell

c
s

-

s
-

For investigating the long time stability of a given traje
tory g0, the eigenvalues~or the trace! of the product matrix

•••~T38E3T3P3!~T28E2T2P2!~T18E1T1P1! ~2!

have to be calculated, where the individual matrices in
expression describe, in reverse order, the stability of the
responding segments of the motion~in the billiard, through
the boundary outwards, in the magnetic field and back ag
into the billiard through the boundary!. This group of four
matrices corresponds to a cycle in the Poincare´ sections of
Fig. 2. ~The matricesT, T8 correspond to the outward an
the inward passage through the boundary, respectively.!

In our simulations, matrices~1! and product~2! corre-
sponding to about 25 000 cycles were calculated explici
and the Lyapunov exponents shown in Fig. 3 were compu
as the logarithm of the largest eigenvalue~practically, the
trace! of the resulting matrix divided by the total time o
flight.

The fact that in theb→` limit the inverse magnetic bil-
liard gives back the dynamics of the normal billiard syste
with elastic walls can be checked also in terms of the sta
ity matrices. A bit lengthy but straightforward calculatio
yields that if the billiard wall is a circle of curvatureq, then

lim
b→`

@T~2b,2m!E~ t,b!T~b,m!#52F 1 0

2
2q

cosm
1G ,

~3!

which is the stability matrix corresponding to an elastic
flection on the wall of curvatureq @16#, as it is expected.

We now comment on the conditions of the experimen
realization of the inverse magnetic billiards. This arrang
ment can be realized by depositing a superconductor p
~e.g., of stadium shape! on the top of a 2DEG~e.g., using
GaAs/AlxGa12xAs heterostructure! and applying an externa
homogeneous magnetic field. The magnetic field is exclu
from the region covered by the superconductor, due to
Meissner effect.

There are four characteristic lengths in the system:
Fermi wavelength~typically lF540 nm @3#!, the character-
istic lengthr of the system~e.g., the radius of the stadium!,
the cyclotron radiusRc , and the mean free pathl ~which can
be as high as 104 nm @3#!. The classical ballistic motion o
the electrons requires thatlF!r ,Rc! l . ~The last condition
assures that the electron travels through several Poin´
cycles without scattering on impurities.! Figure 3 shows that
the relevant values of the ratioRc /r are in the range of
0.0121.0. The magnetic field can be as high as a few te
without destroying superconductivity. This implies thatRc
*50 nm ~using that the effective mass of electronsmeff
50.067me , whereme is the mass of the electron, andEF
514 meV @3#!. Assuming that the size of a superconduc
grain is aboutr 51 mm, the cyclotron radii are 50, 300
1000 nm corresponding to dataRc /r in Fig. 2. This implies
2-3
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that parameterb in Fig. 2 corresponds to the experiment
values of the magnetic field 2, 0.3, 0.1 T, respectively. T
semiclassical or full quantum mechanical treatment of
problem can be an extension of our work.

The advantage of our suggested setup in comparison
Andreev billiards~in which chaoticity can also be tunable! is
that in our system, the electrons travel in a homogene
heterostructure without any scattering on the boundary of
stadium, whereas in the case of Andreev billiards the usu
non-negligible normal reflections at the interface of the n
mal and superconducting region may suppress the effec
discussed in Ref.@10#.
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We would like to stress that in the inverse magnetic b
liards the degree of chaoticity can smoothly be tunedby
varying only one experimental parameter, namely the ex
nal magnetic field. This may motivate the experimental re
ization and study of our presently proposed system.
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